# 1-a) Identify the main components in the measuring systems of:

(i) C-shaped Bourdon pressure gauge



| Sensor-transducer stage   | <b>The curved tube</b> acts as the sensor and transducer, where it senses<br>the measured pressure and transforms it into a detectable<br>mechanical displacement. |  |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Signal conditioning stage | <b>The gears</b> condition the signal by amplifying the signal of the curved tube deflection.                                                                      |  |  |  |  |
| Output stage              | The <b>readout scale</b> serves as the output stage of that measurements system.                                                                                   |  |  |  |  |

# (ii) Room mercury switch in thermostat



| Sensor-transducer stage | Bimetallic thermometer acts as the sensor and transducer, where it                                                           |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                         | senses the measured thermal energy and transforms it into a detectable mechanical displacement.                              |  |  |  |  |  |
| Output stage            | <b>Displacement of thermometer tip</b> , as it moves the pointer.                                                            |  |  |  |  |  |
| Feed back control stage | <b>Mercury contact switch</b> interprets the measured temperature and makes a decision regarding the control of the process. |  |  |  |  |  |

# 1-b) Solution:

At atmospheric pressure, the boiling temperature of water,  $X_{t}=100^{\circ}\text{C}$ 

Also,

$$\epsilon_i = X_i - X_T = X_i - 100 \qquad \qquad \therefore X_i = 100 + \epsilon_i$$

$$\varepsilon_{i,R}(\%) = \frac{\varepsilon_i}{X_t} * 100 \qquad \qquad \therefore \ \varepsilon_i = \frac{\varepsilon_{i,R}(\%) * X_t}{100} = \frac{\varepsilon_{i,R}(\%) * 100}{100} = \varepsilon_{i,R}(\%)$$

| Ni             | 1     | 2   | 3     | 4     | 5     | 6    | 7     | 8   | 9     | 10    |
|----------------|-------|-----|-------|-------|-------|------|-------|-----|-------|-------|
| ε <sub>i</sub> | 0.8   | 1.0 | 0.4   | 0.2   | 0.5   | -0.1 | 0.9   | 0.0 | 0.4   | 0.6   |
| Xi             | 100.8 | 101 | 100.4 | 100.2 | 100.5 | 99.9 | 100.9 | 100 | 100.4 | 100.6 |

Also,

Deviation = 
$$d_i = X_i - \overline{X}$$
 Mean reading =  $\overline{X} = \frac{\sum X_i}{N} = \frac{1004.7}{10} = \boxed{100.47^{\circ}C}$ 

Therefore,

| Ni | 1    | 2    | 3     | 4     | 5    | 6     | 7    | 8     | 9     | 10   |
|----|------|------|-------|-------|------|-------|------|-------|-------|------|
| di | 0.33 | 0.53 | -0.07 | -0.27 | 0.03 | -0.57 | 0.43 | -0.47 | -0.07 | 0.13 |

Average Deviation = 
$$D = \frac{\sum |d_i|}{N} = \frac{2.9}{10} \cong \boxed{0.29^{\circ}C}$$

Standard Deviation = 
$$\delta = \sqrt{\frac{\sum d_i^2}{N-1}} = \sqrt{\frac{1.221}{9}} \cong \boxed{0.368^{\circ}\text{C}}$$

$$\therefore \text{ Variance} = \delta^2 = 0.368^2 \cong \boxed{0.135^\circ\text{C}}$$

Uncertainty = 
$$\omega_T = \pm \sqrt{\sum d_i^2} = \pm \sqrt{1.221} \cong \boxed{\pm 1.105^{\circ}C}$$

# 2-a) Define the error of the measurement and its main types.

Measurement Error or absolute error ( $\epsilon$ ) is the difference between the measured value and true (known standard) value (<u>does not</u> written on the instrument).



## **Types of Measurement Errors:**

### 1) Gross Error

Gross errors are basically human errors caused by the person using the instrument. Some reasons for gross errors are:

# → Reading with parallax error.





→ Improper applications of instruments: Using a 0–100 V voltmeter to measure 0.1 V, etc.
→ Wrong computation.

#### 2) Systematic Error

Systematic error is a <u>constant</u> deviation of operation in instruments. It causes the measured result to deviate by a <u>fixed</u> amount in <u>one direction</u> from the correct value, and thus may <u>not</u> be reduced by averaging over a lot of data.

A systematic error influences the <u>accuracy</u> of the result. It can be estimated by comparing your results to other results of another equipment.

Some reasons systematic errors are:

- Friction in various moving components.
- Irregular spring tension in analog meters.
- Calibration errors due to aging.

# 3) Random Error

Random error is a measure of the random variation found during repeated measurements of a variable.

Therefore, experiments with very small random errors are said to have a high degree of <u>precision</u> (A random error influences the <u>precision</u> of a result).

These errors can only be estimated by statistical analysis.

2-b) Given

$$\begin{split} P &= \rho RT & R = 287 \, J/kg \,.\, K \pm 0.2\% \\ T &= 25 \pm 0.2^\circ C = 298 \pm 0.2 \,\, K & P = 105 \,\, kPa = 105000 \,\, Pa \\ \rho &= ?? & \omega_\rho = ?? \end{split}$$

### Solution

$$\omega_{P} = \pm \sqrt{\epsilon_{L}^{2} + \epsilon_{H}^{2} + \epsilon_{K}^{2} + \epsilon_{Z}^{2}} = \pm \sqrt{\left(\frac{0.1 * 100}{100}\right)^{2} + \left(\frac{0.1 * 100}{100}\right)^{2} + \left(\frac{0.15 * 100}{100}\right)^{2} + \left(\frac{0.2 * 100}{100}\right)^{2}}$$

 $\therefore \omega_{P} \cong \pm 0.28723 \text{ kPa} \cong \pm 287.23 \text{ Pa}$  $\therefore \omega_{\rho} = \pm \sqrt{\left(\frac{\partial \rho}{\partial P}\omega_{P}\right)^{2} + \left(\frac{\partial \rho}{\partial R}\omega_{R}\right)^{2} + \left(\frac{\partial \rho}{\partial T}\omega_{T}\right)^{2}}$  $\rho = \frac{P}{PT}$  $\omega_{\rm R} = \pm \frac{0.2 * 287}{100} \cong \pm 0.574 \, \text{J/kg.K}$  $\omega_{\rm T} = \pm 0.2$ °C  $\omega_{\rm P} = \pm 287.23 \, \text{Pa}$  $\frac{\partial \rho}{\partial P} = \frac{1}{RT} = \frac{1}{287 * 298} \cong 1.16924 * 10^{-5} \qquad \qquad \frac{\partial \rho}{\partial R} = \frac{-P}{R^2 T} = \frac{-100000}{287^2 * 298} \cong -0.004074$  $\frac{\partial \rho}{\partial T} = \frac{-P}{RT^2} = \frac{-100000}{287 * 298^2} \cong -0.003924$  $\therefore \omega_{\rho} = \pm \sqrt{(1.16924 * 10^{-5} * 287.23)^2 + (0.004074 * 0.574)^2 + (0.003924 * 0.2)^2} \cong \left[ \pm 0.00417 \text{ kg/m}^3 \right]$ :  $\rho \cong 1.169 \pm 0.00417 \text{ kg/m}^3 \cong 1.169 \text{ kg/m}^3 \pm 0.3564\%$  $\rho = \frac{P}{RT} = \frac{100000}{287 * 298} \cong 1.169 \text{ kg/m}^3$ Another Solution  $\rho = \frac{P}{RT} = \frac{100000}{287 * 298} \cong \boxed{1.169 \,\text{kg/m}^3}$  $\rho = \frac{P}{RT} = P R^{-1} T^{-1}$  $\frac{\omega_{\rho}}{\rho} = \pm \sqrt{\left(\frac{1*\omega_{P}}{P}\right)^{2} + \left(\frac{-1*\omega_{R}}{R}\right)^{2} + \left(\frac{-1*\omega_{T}}{T}\right)^{2}}$  $\frac{\omega_{\rm R}}{\rm R} = \pm 0.2\%$  $\omega_P=\pm 287.23~\text{Pa}$  $\omega_T=\pm 0.2^{\circ}\text{C}$  $\therefore \frac{\omega_{\rho}}{\rho} = \pm \sqrt{\left(\frac{287.23}{100000}\right)^2 + (0.002)^2 + \left(\frac{0.2}{298}\right)^2} \cong \pm 0.003564$  $\therefore \, \omega_{\text{o}} = \pm 0.003564 * 1.169 \cong \boxed{\pm 0.00417 \, \text{kg/m}^3 \cong \pm 0.3564\%}$  $\therefore \boxed{\rho \cong 1.169 \pm 0.00417 \text{ kg/m}^3 \cong 1.169 \text{ kg/m}^3 \pm 0.3564\%}$ 

## 3-a) Synthesis the following terms as applied to measurement system:

Variable:

Variables are entities that influence the test and affect the outcome as T, P, u...

- Independent Variable; it changes independently of other variables.
- Dependent Variable; it is affected by changes in one or more other variables.

**Parameter:** Parameter is a group of variables as Re, Gr, Pr, .... (example: Re = ud/v)

HysteresisIt refers to the maximum differenceerror:for the same measured quantitybetween the upscale sequential testand a downscale sequential test.

It may be due to mechanical friction, magnetic effects, elastic deformation or thermal effects.

$$\varepsilon_{\rm H} = y_{\rm downscale} - y_{\rm upscal}$$

Non-linearity Non-Linearity error is the maximum difference between the actual data and the ideal linear relation between input and output.

$$\varepsilon_L(x) = y(x) - y_L(x)$$



Input value

**Sensitivity:** Sensitivity indicates how much the output of an instrument system changes when the quantity being measured changes by a given amount.

sensitivity = K = 
$$\frac{\text{change of output reading}}{\text{change of input}} = \frac{\Delta X_o}{\Delta X_i}$$

Accuracy: Accuracy is the closeness of a measured value to the true value being measured. In other words, it is the minimum graduation (reading) that can be taken from the measuring instrument.

**Precision:** Precision is the ability of a measuring instrument to reproduce a certain reading with a given accuracy. These readings may or may not be accurate, but will repeat. The term precision is used to describe the degree of freedom of a measurement system from random errors.



**Uncertainty:** It characterizes the range of values within which the true value is asserted to lie. It is written on the instrument

**Time constant:** It is the time required for a system to achieve 63.2% of the step change magnitude  $(y_{\infty} - y_0)$ . It is a measure of the speed of system response.



**Rise time:** Rise time of a system is the length of time required for the step response to rise from 0.1(10%) to 0.9(90%) of the step change magnitude  $(y_{\infty} - y_0)$ .





Time lag is the time interval between the maximum force input and maximum displacement output.



| 3-b) Given                                                                                                      |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First – order system                                                                                            | $T_0 = 25^{\circ}C$                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $T_{\infty} = 65^{\circ}C$                                                                                      | T(t) = ??                                                                                                                   | Control volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\tau = 25 \text{ ms} = 0.025 \text{ s}$                                                                        | t <sub>R</sub> =??                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solution                                                                                                        |                                                                                                                             | ( The second sec |
| Apply energy balance for a b                                                                                    | ody: $\therefore Q_{in} - Q_{out} + Q_g = Q_{st}$                                                                           | Q <sub>stored</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| For the bulb of the thermom                                                                                     | eter, we can assume that no heat out and                                                                                    | <b>T</b> $(T = T(t))$ Bulb sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| no neat generation $\dot{0} = 0 = 0$                                                                            |                                                                                                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $Q_{out} - Q_g - 0$                                                                                             | dт                                                                                                                          | Q <sub>in</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\therefore Q_{\rm in} = Q_{\rm st}$                                                                            | $\therefore \ \overline{h}A_{s}[T_{\infty} - T(t)] = \rho VC \frac{dT}{dt}$                                                 | Bulb of a thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\therefore T_{\infty} - T(t) = \frac{\rho VC}{\overline{h}A_s} \frac{dT}{dt}$                                  | $\therefore T_{\infty} - T(t) = \tau \frac{dT}{dt} \qquad \text{where}  \tau = \frac{\rho V C}{\overline{h} A_s}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Let $\theta = T_{\infty} - T(t)$                                                                                | $\therefore \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{-\mathrm{d}T}{\mathrm{d}t}$                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\therefore \theta = -\tau \frac{d\theta}{dt}$                                                                  | $\therefore \frac{\mathrm{d}\theta}{\mathrm{\theta}} = \frac{-1}{\mathrm{\tau}} \mathrm{d}t$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\therefore \int_{\theta_0}^{\theta(t)} \frac{\mathrm{d}\theta}{\theta} = \frac{-1}{\tau} \int_0^t \mathrm{d}t$ | $\therefore \ln \theta(t) - \ln \theta_0 = \ln \frac{\theta(t)}{\theta_0} = \ln \frac{T_{\infty} - T(t)}{T_{\infty} - T_0}$ | $=\frac{-t}{\tau}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\therefore \frac{T(t) - T_{\infty}}{T_0 - T_{\infty}} = e^{-t/\tau}$                                           | $\therefore T(t) = T_{\infty} + (T_0 - T_{\infty})e^{-t/\tau} = 65 + (25)$                                                  | $5-65)e^{-t/0.025}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\therefore T(t) = 65 - 40e^{-40 t}$                                                                            |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $I' = 0.1 = e^{-40} t_{I'=0.1}$                                                                                 | $\therefore t_{I=0.1} \cong 0.05756 \text{ s} = 57.56 \text{ ms}$                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $f' = 0.9 = e^{-40} t_{f'=0.9}$                                                                                 | $\therefore t_{f=0.9} \cong 0.00263 \text{ s} = 2.63 \text{ ms}$                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\therefore t_{\rm R} = t_{\rm I'=0.1} - t_{\rm I'=0.9} = 57.5$                                                 | $6 - 2.63 \cong \boxed{54.93 \text{ ms}}$                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01.                                                                                                             |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |