1-a) Identify the main components in the measuring systems of:
(i) C-shaped Bourdon pressure gauge

Sensor-transducer stage

The curved tube acts as the sensor and transducer, where it senses the measured pressure and transforms it into a detectable mechanical displacement.

Signal conditioning stage The gears condition the signal by amplifying the signal of the curved tube deflection.

Output stage
(ii) Room mercury switch in thermostat

Sensor-transducer stage

Output stage

Feed back control stage

Bimetallic thermometer acts as the sensor and transducer, where it senses the measured thermal energy and transforms it into a detectable mechanical displacement.

Displacement of thermometer tip, as it moves the pointer.
Mercury contact switch interprets the measured temperature and makes a decision regarding the control of the process.

1-b) Solution:

At atmospheric pressure, the boiling temperature of water, $\mathrm{X}_{\mathrm{t}}=100^{\circ} \mathrm{C}$
Also,
$\varepsilon_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{T}}=\mathrm{X}_{\mathrm{i}}-100$
$\therefore \mathrm{X}_{\mathrm{i}}=100+\varepsilon_{\mathrm{i}}$
$\varepsilon_{i, \mathrm{R}}(\%)=\frac{\varepsilon_{\mathrm{i}}}{\mathrm{X}_{\mathrm{t}}} * 100$

$$
\therefore \varepsilon_{\mathrm{i}}=\frac{\varepsilon_{\mathrm{i}, \mathrm{R}}(\%) * \mathrm{X}_{\mathrm{t}}}{100}=\frac{\varepsilon_{\mathrm{i}, \mathrm{R}}(\%) * 100}{100}=\varepsilon_{\mathrm{i}, \mathrm{R}}(\%)
$$

N_{i}	1	2	3	4	5	6	7	8	9	10
ε_{i}	0.8	1.0	0.4	0.2	0.5	-0.1	0.9	0.0	0.4	0.6
X_{i}	100.8	101	100.4	100.2	100.5	99.9	100.9	100	100.4	100.6

Also,
Deviation $=d_{i}=X_{i}-\bar{X}$ Mean reading $=\overline{\mathrm{X}}=\frac{\sum \mathrm{X}_{\mathrm{i}}}{\mathrm{N}}=\frac{1004.7}{10}=100.47^{\circ} \mathrm{C}$

Therefore,

N_{i}	1	2	3	4	5	6	7	8	9	10
$\mathrm{~d}_{\mathrm{i}}$	0.33	0.53	-0.07	-0.27	0.03	-0.57	0.43	-0.47	-0.07	0.13

Average Deviation $=\mathrm{D}=\frac{\sum\left|\mathrm{d}_{\mathrm{i}}\right|}{\mathrm{N}}=\frac{2.9}{10} \cong 0.29^{\circ} \mathrm{C}$

Standard Deviation $=\delta=\sqrt{\frac{\sum \mathrm{d}_{\mathrm{i}}^{2}}{\mathrm{~N}-1}}=\sqrt{\frac{1.221}{9}} \cong 0.368^{\circ} \mathrm{C}$
\therefore Variance $=\delta^{2}=0.368^{2} \cong 0.135^{\circ} \mathrm{C}$
Uncertainty $=\omega_{\mathrm{T}}= \pm \sqrt{\sum \mathrm{d}_{\mathrm{i}}^{2}}= \pm \sqrt{1.221} \cong \pm 1.105^{\circ} \mathrm{C}$

2-a) Define the error of the measurement and its main types.
Measurement Error or absolute error (ε) is the difference between the measured value and true (known standard) value (does not written on the instrument).

$$
\varepsilon=X_{\text {measured }}-X_{\text {true }}
$$

Types of Measurement Errors:

1) Gross Error

Gross errors are basically human errors caused by the person using the instrument. Some reasons for gross errors are:
\rightarrow Reading with parallax error.

\rightarrow Improper applications of instruments: Using a $0-100 \mathrm{~V}$ voltmeter to measure 0.1 V , etc.
\rightarrow Wrong computation.

2) Systematic Error

Systematic error is a constant deviation of operation in instruments. It causes the measured result to deviate by a fixed amount in one direction from the correct value, and thus may not be reduced by averaging over a lot of data.

A systematic error influences the accuracy of the result.
It can be estimated by comparing your results to other results of another equipment.

Some reasons systematic errors are:
© Friction in various moving components.
((Irregular spring tension in analog meters.
(- Calibration errors due to aging.

3) Random Error

Random error is a measure of the random variation found during repeated measurements of a variable.

Therefore, experiments with very small random errors are said to have a high degree of precision (A random error influences the precision of a result).

These errors can only be estimated by statistical analysis.

2-b) Given

$\mathrm{P}=\rho \mathrm{RT} \quad \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K} \pm 0.2 \%$
$\mathrm{T}=25 \pm 0.2^{\circ} \mathrm{C}=298 \pm 0.2 \mathrm{~K} \quad \mathrm{P}=105 \mathrm{kPa}=105000 \mathrm{~Pa}$
$\rho=$? ? $\quad \omega_{\rho}=$??

Solution

$\omega_{\mathrm{P}}= \pm \sqrt{\varepsilon_{\mathrm{L}}^{2}+\varepsilon_{\mathrm{H}}^{2}+\varepsilon_{\mathrm{K}}^{2}+\varepsilon_{\mathrm{Z}}^{2}}= \pm \sqrt{\left(\frac{0.1 * 100}{100}\right)^{2}+\left(\frac{0.1 * 100}{100}\right)^{2}+\left(\frac{0.15 * 100}{100}\right)^{2}+\left(\frac{0.2 * 100}{100}\right)^{2}}$
$\therefore \omega_{\mathrm{P}} \cong \pm 0.28723 \mathrm{kPa} \cong \pm 287.23 \mathrm{~Pa}$
$\rho=\frac{\mathrm{P}}{\mathrm{RT}}$

$$
\therefore \omega_{\rho}= \pm \sqrt{\left(\frac{\partial \rho}{\partial \mathrm{P}} \omega_{\mathrm{P}}\right)^{2}+\left(\frac{\partial \rho}{\partial \mathrm{R}} \omega_{\mathrm{R}}\right)^{2}+\left(\frac{\partial \rho}{\partial \mathrm{T}} \omega_{\mathrm{T}}\right)^{2}}
$$

$\omega_{\mathrm{P}}= \pm 287.23 \mathrm{~Pa}$
$\omega_{\mathrm{T}}= \pm 0.2^{\circ} \mathrm{C}$
$\omega_{\mathrm{R}}= \pm \frac{0.2 * 287}{100} \cong \pm 0.574 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$
$\frac{\partial \rho}{\partial \mathrm{P}}=\frac{1}{\mathrm{RT}}=\frac{1}{287 * 298} \cong 1.16924 * 10^{-5} \quad \frac{\partial \rho}{\partial \mathrm{R}}=\frac{-\mathrm{P}}{\mathrm{R}^{2} \mathrm{~T}}=\frac{-100000}{287^{2} * 298} \cong-0.004074$
$\frac{\partial \rho}{\partial \mathrm{T}}=\frac{-\mathrm{P}}{\mathrm{RT}^{2}}=\frac{-100000}{287 * 298^{2}} \cong-0.003924$
$\therefore \omega_{\rho}= \pm \sqrt{\left(1.16924 * 10^{-5} * 287.23\right)^{2}+(0.004074 * 0.574)^{2}+(0.003924 * 0.2)^{2}} \cong \pm 0.00417 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho=\frac{\mathrm{P}}{\mathrm{RT}}=\frac{100000}{287 * 298} \cong 1.169 \mathrm{~kg} / \mathrm{m}^{3} \quad \therefore \rho \cong 1.169 \pm 0.00417 \mathrm{~kg} / \mathrm{m}^{3} \cong 1.169 \mathrm{~kg} / \mathrm{m}^{3} \pm 0.3564 \%$

Another Solution

$$
\rho=\frac{\mathrm{P}}{\mathrm{RT}}=\frac{100000}{287 * 298} \cong 1.169 \mathrm{~kg} / \mathrm{m}^{3} \quad \rho=\frac{\mathrm{P}}{\mathrm{RT}}=\mathrm{PR}^{-1} \mathrm{~T}^{-1}
$$

$\frac{\omega_{\rho}}{\rho}= \pm \sqrt{\left(\frac{1 * \omega_{\mathrm{P}}}{\mathrm{P}}\right)^{2}+\left(\frac{-1 * \omega_{\mathrm{R}}}{\mathrm{R}}\right)^{2}+\left(\frac{-1 * \omega_{\mathrm{T}}}{\mathrm{T}}\right)^{2}}$
$\omega_{\mathrm{P}}= \pm 287.23 \mathrm{~Pa}$
$\omega_{\mathrm{T}}= \pm 0.2^{\circ} \mathrm{C}$

$$
\frac{\omega_{\mathrm{R}}}{\mathrm{R}}= \pm 0.2 \%
$$

$\therefore \frac{\omega_{\rho}}{\rho}= \pm \sqrt{\left(\frac{287.23}{100000}\right)^{2}+(0.002)^{2}+\left(\frac{0.2}{298}\right)^{2}} \cong \pm 0.003564$
$\therefore \omega_{\rho}= \pm 0.003564 * 1.169 \cong \pm 0.00417 \mathrm{~kg} / \mathrm{m}^{3} \cong \pm 0.3564 \%$
$\therefore \rho \cong 1.169 \pm 0.00417 \mathrm{~kg} / \mathrm{m}^{3} \cong 1.169 \mathrm{~kg} / \mathrm{m}^{3} \pm 0.3564 \%$

3-a) Synthesis the following terms as applied to measurement system:

Variable:

Parameter:
Hysteresis error:

Non-linearity error:

Sensitivity: Sensitivity indicates how much the output of an instrument system changes when the quantity being measured changes by a given amount.

$$
\text { sensitivity }=K=\frac{\text { change of output reading }}{\text { change of input }}=\frac{\Delta \mathrm{X}_{\mathrm{o}}}{\Delta \mathrm{X}_{\mathrm{i}}}
$$

Accuracy: Accuracy is the closeness of a measured value to the true value being measured. In other words, it is the minimum graduation (reading) that can be taken from the measuring instrument.

Precision:

$$
\varepsilon_{\mathrm{H}}=\mathbf{y}_{\text {downscale }}-\mathbf{y}_{\text {upscale }}
$$

Non-Linearity error is the maximum difference between the actual data and the ideal linear relation between input and output.

$$
\varepsilon_{\mathrm{L}}(x)=y(x)-y_{\mathrm{L}}(x)
$$

Variables are entities that influence the test and affect the outcome as T, $\mathrm{P}, \mathrm{u} . .$.

- Independent Variable; it changes independently of other variables.
- Dependent Variable; it is affected by changes in one or more other variables.

Parameter is a group of variables as $\mathrm{Re}, \mathrm{Gr}, \mathrm{Pr}, . .$. (example: $\mathrm{Re}=\mathrm{ud} / \mathrm{v}$)
It refers to the maximum difference for the same measured quantity between the upscale sequential test and a downscale sequential test.

It may be due to mechanical friction, magnetic effects, elastic deformation or thermal effects.

Precision is the ability of a measuring instrument to reproduce a certain reading with a given accuracy. These readings may or may not be accurate, but will repeat. The term precision is used to describe the degree of freedom of a measurement system from random errors.

Not Accurate \& Not precise (Out layers)

Not Accurate \& precise

Throws of a Dart

Uncertainty: It characterizes the range of values within which the true value is asserted to lie. It is written on the instrument

Time constant: It is the time required for a system to achieve 63.2% of the step change magnitude $\left(y_{\infty}-y_{0}\right)$. It is a measure of the speed of system response.

Rise time: \quad Rise time of a system is the length of time required for the step response to rise from $0.1(10 \%)$ to $0.9(90 \%)$ of the step change magnitude ($\mathrm{y}_{\infty}-\mathrm{y}_{0}$).

$$
\mathbf{t}_{\mathbf{R}}=\mathrm{t}_{\Gamma=0.1}-\mathrm{t}_{\Gamma=0.9}
$$

Time lag:
Time lag is the time interval between the maximum force input and maximum displacement output.

$$
\beta=\frac{\emptyset}{\omega}
$$

3-b) Given

First - order system

$$
\begin{aligned}
& \mathrm{T}_{0}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}(\mathrm{t})=? ? \\
& \mathrm{t}_{\mathrm{R}}=? ?
\end{aligned}
$$

$\mathrm{T}_{\infty}=65^{\circ} \mathrm{C}$
$\tau=25 \mathrm{~ms}=0.025 \mathrm{~s}$

Solution

Apply energy balance for a body: $\quad \therefore Q_{\text {in }}-Q_{\text {out }}+Q_{g}=Q_{\text {st }}$
For the bulb of the thermometer, we can assume that no heat out and no heat generation
$\therefore \mathrm{Q}_{\text {out }}=\mathrm{Q}_{\mathrm{g}}=0$
$\therefore \mathrm{Q}_{\text {in }}=\mathrm{Q}_{\text {st }}$
$\therefore \overline{\mathrm{h}} \mathrm{A}_{\mathrm{s}}\left[\mathrm{T}_{\infty}-\mathrm{T}(\mathrm{t})\right]=\rho \mathrm{VC} \frac{\mathrm{dT}}{\mathrm{dt}}$

Bulb of a thermometer
$\therefore \mathrm{T}_{\infty}-\mathrm{T}(\mathrm{t})=\frac{\rho V \mathrm{VC}}{\overline{\mathrm{h}} \mathrm{A}_{\mathrm{s}}} \frac{\mathrm{dT}}{\mathrm{dt}}$
$\therefore \mathrm{T}_{\infty}-\mathrm{T}(\mathrm{t})=\tau \frac{\mathrm{dT}}{\mathrm{dt}} \quad$ where $\quad \tau=\frac{\rho \mathrm{VC}}{\overline{\mathrm{h}} \mathrm{A}_{\mathrm{s}}}$
Let $\theta=\mathrm{T}_{\infty}-\mathrm{T}(\mathrm{t})$
$\therefore \frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{-\mathrm{dT}}{\mathrm{dt}}$
$\therefore \theta=-\tau \frac{\mathrm{d} \theta}{\mathrm{dt}}$
$\therefore \frac{\mathrm{d} \theta}{\theta}=\frac{-1}{\tau} \mathrm{dt}$
$\therefore \int_{\theta_{0}}^{\theta(\mathrm{t})} \frac{\mathrm{d} \theta}{\theta}=\frac{-1}{\tau} \int_{0}^{\mathrm{t}} \mathrm{dt}$
$\therefore \ln \theta(\mathrm{t})-\ln \theta_{0}=\ln \frac{\theta(\mathrm{t})}{\theta_{0}}=\ln \frac{\mathrm{T}_{\infty}-\mathrm{T}(\mathrm{t})}{\mathrm{T}_{\infty}-\mathrm{T}_{0}}=\frac{-\mathrm{t}}{\tau}$
$\therefore \frac{\mathrm{T}(\mathrm{t})-\mathrm{T}_{\infty}}{\mathrm{T}_{0}-\mathrm{T}_{\infty}}=\mathrm{e}^{-\mathrm{t} / \tau}$
$\therefore \mathrm{T}(\mathrm{t})=\mathrm{T}_{\infty}+\left(\mathrm{T}_{0}-\mathrm{T}_{\infty}\right) \mathrm{e}^{-\mathrm{t} / \mathrm{\tau}}=65+(25-65) \mathrm{e}^{-\mathrm{t} / 0.025}$
$\therefore \mathrm{T}(\mathrm{t})=65-40 \mathrm{e}^{-40 \mathrm{t}}$
$\Gamma=0.1=\mathrm{e}^{-40 \mathrm{t}_{\Gamma=0.1}}$
$\therefore \mathrm{t}_{\Gamma=0.1} \cong 0.05756 \mathrm{~s}=57.56 \mathrm{~ms}$
$\digamma=0.9=\mathrm{e}^{-40 \mathrm{t}_{\mathrm{r}=0.9}}$
$\therefore \mathrm{t}_{\Gamma=0.9} \cong 0.00263 \mathrm{~s}=2.63 \mathrm{~ms}$
$\therefore \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\Gamma=0.1}-\mathrm{t}_{\Gamma=0.9}=57.56-2.63 \cong 54.93 \mathrm{~ms}$

